Aging, structuration, and creep behavior in sand

Yu-Hsing Wang

Department of Civil and Environmental Engineering

IS-Cambridge 2014

香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Lab. of Wave-based Characterizations

Sep 01, 2014

Outline

- Introduction
 - What is aging?
 - Omni-aging behavior
 - Proposed mechanisms
- Mechanisms of aging in sand
 - Our hypothesis
 - Numerical and experimental evidence
- Interesting soil behavior related to aging.

Introduction

What is aging?

Everything on the earth has at least one thing in common - everything changes with time.

Schmertmann, 1991

THE MECHANICAL AGING OF SOILS

By John H. Schmertmann,¹ Fellow, ASCE

(The Twenty-Fifth Karl Terzaghi Lecture)

Aging (creep, structuration):
Time-dependent changes of soil properties

What is Aging (an example)?

- Resonant column test on dry Toyoura sand.
- σ' = 35 kPa, 7 days
- G_{max} & D_{min}

What is Aging (an example)?

• $G_{7d}/G_{in} = +8.6\%$ $D_{7d}/D_{in} = -39.2\%$ $\varepsilon_{\text{axial}} \approx 10^{-3}\%$ (minute deformation) нкизт 15KV 1.5 m 96 0.5 (T3) DT35A7d 100A7d $p' = 100 \text{ kPa}, \gamma = 5 \times 10^{-4} \%$ 94 0.4 $\Delta G_{7d}/G_{in} = +8.60\%$ **D**_{min} Shear Modulus, G (MPa) 6 6 0. 70 Damping Ratio, *D* (%) Why does such a minute deformation can produce significant changes in soil properties? **G**_{max} $\Delta D_{70}/D_{in} = -39.2\%$ 88 0.1 Shear modulus Damping ratio 86 0.0 10 10000 100 1000 1 Aging Time (min)

(Wang and Tsui 2009)

Omni-aging behavior

- Increasing shear stiffness (e.g., Afifi and Woods, 1971; Anderson and Stokoe 1978; Baxter and Mitchell 2004)
- Increasing shear strength (e.g., Daramola 1980; Tatsouka et al. 2000; Lade 2007)
- Increasing dilatancy (e.g., Daramola 1980; Bowman and Soga 2003)

Omni-aging behavior

• Increasing cone penetration resistance (e.g., Mitchell and Solymar 1984; Dowding and Hryciw 1986; Thomann and Hryciw 1992; Charlie et al. 1992; Joshi et al. 1995)

(The Twentieth Karl Terzaghi Lecture)

Omni-aging behavior

• Producing the setup of displacement piles in sand (e.g., York et

al. 1994; Chow et al. 1998; Axelsson 2000; Bowman and Soga 2005; Bullock et al. 2005; Jardine et al. 2006)

Pile capacity (shaft 3 × 1-Tavenas & Audy (1972): Hexagonal resistance) continues 2-York et al. (1994): Monotube to increase after ▲ 3-Chen et al. (1999): Square • 4-Axelsson (2000): Square installation 2.5 □ 5-Samson and Authier (1986): H \triangle 6-Chow et al. (1998): Pipe 07-Shek et al. (2006): H Q_T/Q_{T0} 2 Δ XX Δ Δ 1.5 X X 0 1 100 1000 10000 1 10 Elapsed time after installation (days) summarized by Zhang and Wang(2014)

Aging mechanisms

- Chemical and biological cementation processes (e.g., Mitchell and Solymar 1984; Mitchell 1986; Mitchell and Soga 2005)
- Creep processes, involved particle rearrangement (e.g., Mesri et al. 1990; Schmertmann 1991; Santamarina et al. 2001; Bowman and Soga 2003; Suarez et al. 2014).
- **Static fatigue** at grain contacts (Michalowski et al. 2012; Nadukuru and Michalowski 2014); induced particle crushing (Lade and Karimpour 2010)

Nadukuru and Michalowski (2014)

Mechanisms of aging in sand

(Gao et al. 2013)

Our hypothesis

 Interparticle contact normal forces are not uniformly distributed and concentrated at contacts

Our hypothesis

Homogenization of contact forces (Santamarina et al.

2001; Wang et al. 2008; Gao et al. 2013; Wang and Gao 2013)

- Inevitable contact creep during aging
- Contact forces redistribution and homogenization

Then, we have to examine and prove this hypothesis.....

(Gao et al. 2013)

Experimental details

> The true triaxial apparatus

300 mm × 300 mm × 300 mm

Independent stress control in x, y, and z directions

(Compressed air \rightarrow Air bag)

Section view

Experimental details

Determination of shear modulus

Experimental details

- > Experimental plans
 - Materials
 - Leighton Buzzard sand (LB)

Aging for three days

Details of DEM simulation

➢ Procedures

3D simulation (PFC3D, Itasca)

Details of DEM simulation

(d) Shearing test

Shear strain: small-strain (~10⁻⁶) G_{max}

Experimental results

- $\sigma_x = \sigma_y = \sigma_z$
- 50 kPa→200 kPa→ 50 kPa

Experimental results

Aging rate: $(G-G_0)/G_0 \times 100\%$

Similar aging rate for three moduli

 σ_{o} Aging rate \downarrow

Aging rate↓ on unloading

DEM simulation results

The same behavior was reproduced using DEM simulations.

Micromechanical insights – contact normal force

- Strong forces (contacts) $F_n / \langle F_n \rangle > 1$, force F_n greater than
 - the mean $\langle F_n \rangle$
- Weak forces (contacts) $F_n / \langle F_n \rangle < 1$, force F_n less than the mean $\langle F_n \rangle$
- POW

The percentage of weak forces POW↓

Degree of contact force homogenization **†**

(After Radjai et al., 1996; 1998)

Micromechanical insights – contact normal force

Micromechanical insights – contact normal force

Discussion

Discussion

Aging rate: $(G-G_0)/G_0 \times 100\%$

 σ_{o} Aging rate \downarrow

Time (min)

• Tactile pressures sensor (film-like senor)

Isotropic loading of 100 kPa for <u>30 days</u>

Shear modulus continues to increase with minute volume changes ~0.01%

Isotropic loading of 100 kPa

Summary

Experimental result

DEM simulation result

Interparticle contact normal forces become more homogenized

Interesting aging behavior I

What are aging-induced modulus changes of sand with inherent fabric anisotropy?

(Wang and Gao 2013)

Experimental details

• Testing materials

• Testing plans

Toyoura sand (inherent fabric anisotropy)

Aging for three days

 $\sigma_x = \sigma_y = \sigma_z$ 50 kPa \rightarrow 125 kPa \rightarrow 175 kPa

Details of DEM simulation

- Packing
- Compression
- Aging process
- Shearing test

Summary

• Larger tangential forces in the x and y directions can induce a higher sliding creep and greater force redistribution in the same direction during aging.

A higher aging rate for G_{xy} than for G_{yz} (or G_{zx}) is observed.

• Stiffness anisotropy continues to increase during aging.

Interesting aging behavior II & III

Why are the aging effects more pronounced on the decrease in D_{min}?
Why are aging effects not always observed?
(straining effect)
(Tong and Wang 2014)

DEM simulations of cyclic shear tests

DEM simulations of cyclic shear tests

- The shear velocity was very low (~2 ×10⁻⁷ mm/s)
- The shear strain is controlled in the range of (2 ×10⁻⁶ ~ 7 ×10⁻⁴)

$$D = \frac{W_L}{4\pi W_S} = \frac{W_L}{2G\gamma^2}$$

W_L: Energy dissipated W_S: Energy stored.

Aging effects on G and D $D = \frac{W_L}{4\pi W_S} = \frac{W_L}{2G\gamma^2}$

Resonant column tests; Toyoura sand subjected to a constant isotropic confining pressure of 100 kPa for 2 days.

Micromechanical insights ($\gamma = 10^{-5}$)

Micromechanical insights ($\gamma = 10^{-5}$)

Micromechanical insights $(\gamma = 5 \times 10^{-4})$

Results and Discussions ($\gamma = 5 \times 10^{-4}$)

 $D = \frac{W_L}{4\pi W_S} = \frac{W_L}{2G\gamma^2}$

Summary

- The aging effects can decrease damping ratios *D* more significantly than they can enhance the shear moduli *G*.
- The contact forces homogenized during aging can be gradually destroyed by subsequent shearing and associated structural changes. This is one of the reasons why aging effects are not always observed.

Interesting aging behavior III

Why are aging effects not always observed (density, unloading/reloading effects)?

(Wang and Tsui 2009)

Effect of packing density on the aging Rate

Summary of the resonant column test (G_{max} and D_{min})

	Aging at 35 kPa		Aging at 100 kPa	
	$\Delta G_{f}/G_{in} (\%)$	$\Delta D_{f} / D_{in} (\%)$	$\Delta G_{f}/G_{in}(\%)$	$\Delta D_{f}/D_{in} (\%)$
Dense Ottawa	5.5	-6.0	3.6	-8.7
Loose Ottawa	6.0	-7.7	2.4	-16.9
Dense Toyoura	3.9	-17.2	8.6	-39.2
Loose Toyoura	7.1	-23.1	4.8	-17.8

Aging rate: Loose > Dense at 35 kPa

A higher degree of contact forces homogenization in loose sand (as we expect)

Dense > Loose at 100 kPa

Structural instability of loose sand (Bowman and Soga 2003)

Aging behavior after unloading-reloading cycles

- Unloading-reloading erases previous aging effects
- Sampling effects

G at different stages is normalized by the virgin-loading value, G_{VL} .

Summary

• Aging effects are density and stress-path dependent.

Interesting aging behavior IV

What are structuration mechanisms and K_o variations during secondary compression and rebound?

(Wang and Gao 2014)

What is structuration?

 Structuration developed during secondary compression can strengthen the soil and then induce a preconsolidation "bump", i.e., a quasipreconsolidation pressure.

"However, another aging test without the preliminary passiveactive cycle failed to produce an aging bump for reasons not yet explored." (Schmertmann, 1991)

Experimental details

100 mm × 100 mm × 40 mm

- Void ratio e versus vertical stress σ'_{v}

For a relative loose packing

For a relative dense packing)

Greater structure changes involved in the loose sample minimize the structuration (or aging) effects

From Plate Test On Dry, #20-50, Qtz. Sand 12 min. 350 400 Load On 8" Diam. Plate (Ibs) (After Schmertmann, 1991)

"However, another aging test without the preliminary passiveactive cycle failed to produce an aging bump for reasons not yet explored." (Schmertmann, 1991)

After the passive-active cycle, the sample might be densified.

- Contact normal forces and G during secondary compression

- measured contact normal forces during secondary compression

Contact force redistribution leads to increasing weak forces and strengthening the soil structure.

- Contact normal forces and G during secondary compression

K_o changes

Vertical stress σ'_v (kPa)

Summary

- The structuration (or aging effects) developed during secondary compression causes the contact forces to redistribute and leads to increasing weak forces. As a result, the soil structure is strengthened.
- K_o continues to increase during secondary compression on the loading path. On the unloading path, however, K_o continues to decrease during secondary rebound.

Interesting aging behavior V

What are the aging effects on the driven pile setup in sand? (Zhang and Wang 2014)
What is the pile setup?

• Shaft resistance continues to increase after the installation of displacement piles in sand (e.g., York et al. 1994; Chow et al. 1998; Axelsson 2000; White and Bolton 2004; Bowman and Soga 2005; Bullock et al. 2005; White et al. 2005; Jardine et al. 2006)

Aging effects on the pile setup

The ultimate shear stress, τ_f , on the shaft (shaft resistance):

$$\tau_f = (\sigma'_{rp} + \Delta \sigma'_{rp}) \tan \delta'_f \qquad \text{Lehane et al. (1993)}$$

 σ_{rp}' is the at-rest radial or lateral effective stress on the pile shaft; $\Delta \sigma_{rp}'$ is the increase in the radial or lateral effective stress during pile loading; δ_{f}' is the interface friction angle at failure.

$$\Delta \sigma'_{rp} = \frac{4\delta h}{D_p} G$$
 Cavity expansion theory

Aging effectsConstrained dilation, $\delta h \uparrow$ Shear modulus, G ↑ $\Delta \sigma'_{rp} \uparrow \tau \uparrow$

If the aging effects are the mechanism of pile setup, why is there no pile setup observed in bored piles?

(e.g., Axelsson 2002; Chow et al. 1998)

Experimental details

The pressurized chamber

Experimental detail

Arrangement of tactile pressure sensors Stress monitoring layer

Experimental detail

Arrangement of tactile pressure sensors Stress monitoring layer

Plan view

Experimental details

Arrangement of tactile pressure sensors

The sensor holder

Printed out by 3D printer

Experimental details

Bender elements

Stiffness monitoring layer

Testing procedures

Experimental results – setup effect

Change in the shaft resistance

Experimental results – Interparticle contact forces

T-r-1 sensor and others

Experimental results - Changes in V_s (or G)

Experimental results – Changes in stress

Experimental results – COV of contact forces

Summary

$$\tau_f = (\sigma'_{rp} + \Delta \sigma'_{rp}) \tan \delta'_f$$

- Pile installation pushes the surrounding soil to the side, thereby imposing additional loading on the soil inside the influence zone. This loading action initiates an associated (2nd) aging (or creep) process during the setup period. Therefore, the soil stiffness G continues to rise and ultimately an increase in $\Delta \sigma_{rp}$ and the pile shaft resistance can be measured (the constrained dilation can also be a cause).
- <u>The absence of pile setup in bored piles</u> Without the loading action induced by pile installation, the 2nd aging process during pile setup period cannot be triggered.
- In a similar logic, the setup rate is higher in large-displacement piles than in small-displacement piles.

Final thought

How can we make the best use of aginginduced soil properties enhancement in our engineering design?

You

Dr. GAO Yan TSUI King Yuen MOK Chit Man ZHANG Zitao TONG Liwei XU Dapeng LAU Yun Man

● 香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Thank

References

- Gao, Y., Wang, Y.H., and Su, J.C.P. (2013). "Mechanisms of aging-induced modulus changes in sand under isotropic and anisotropic loading," *Journal of Geotechnical and Geoenvironmental Engineering, ASCE,* Vol. 139, No. 3, pp. 470-482.
- Wang, Y.H. and Gao, Y. (2013). "Mechanisms of aging-induced modulus changes in sand with inherent fabric anisotropy," *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, Vol. 139, No. 9, pp. 1590-1603.
- Gao, Y. and Wang, Y.H. (2013). "Calibration of tactile pressure sensors for measuring stress in soils," ASTM Geotechnical Testing Journal. Vol. 36, No. 4, doi:10.1520/GTJ20120143.
- Wang, Y. H. and Gao Y. (2014). "Examining the behavior and mechanisms of structuration in sand under the K_o condition," *Granular Matter*. Vol. 16, No. 1, pp. 55-68. (DOI) 10.1007/s10035-013-0457-1.
- Gao, Y. and Wang, Y. H. (2014). "Experimental and DEM examinations of K_o in sand under different loading conditions," *Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.* 140, No. 5, DOI: 10.1061/(ASCE)GT.1943-5606.0001095.
- Tong, L. and Wang, Y.H. (2014). "DEM simulations of shear modulus and damping ratio of sand with emphasis on the effects of particle number, particle shape, and aging," *Acta Geotechnica*, DOI: 10.1007/ s11440-014-0331-2.
- Zhang, Z. and Wang, Y.H. (2014). "Setup mechanisms of driven piles in sand," submitted to Journal of Geotechnical and Geoenvironmental Engineering, ASCE.
- Wang, Y.H. and Tsui, K.Y. (2009). "Experimental characterization of dynamic property changes in aged sands," *Journal of Geotechnical and Geoenvironmental Engineering, ASCE*, Vol. 135, No. 2, pp. 259-270.