

The deep ocean seabed: where biology meets engineering

Matthew Kuo

CUED Geotechnical and Geo-environmental group

Talk outline

- Background: what drove the research
 - Deep-water offshore pipeline design
 - Imaging observations of seabed sediment
- Biologically altered sediment
 - Influence on soil properties
 - Micromechanical observations
- Concluding comments

Where it all started

- A meeting at the University of Western Australia:
 - MK- "I'd like to do a PhD that links geology with engineering..."
 - MDB- "Well...what about looking at the behaviour of hot-oil pipelines on deep-water seabed 'crusts' from the Gulf of Guinea?"

Background: hot-oil pipelines on deep ocean clay crusts

- Crust location: West coast of Africa
 - Water depths: 500 to 2000m
- Hot oil flowing through cold pipelines
 - Thermal expansion → pipe walking and buckling
- Rely on interface friction to control the movement of pipelines

'Biologically-structured' soil

Pellets biologically created...chemically altered to glauconite

Other biological structures: intricate network of burrows

Complicated micromechanics

- Intact pellets are 'relatively strong' in compression...but will they break when a rough pipeline moves over them?
 - Is this why a rough interface produces a lower interface friction value?

- A preliminary investigation into:
 - 1. Pellet sample shearing against rough interface
 - 2. 'No pellet' sample shearing against rough interface
 - 3. Natural soil containing pellets against a smooth interface

1. Shearing of pellet 'grains'

• Yes- pellet crushing occurs when shearing on a rough interface

Pore water 'pulses' during shearing of pellets

2. And if there are no pellets?

Shear direction

Key observations:

- Two families of cracks
- Inclined cracks limited to zone upto ~1.5mm from interface
- Vertical cracks occur above
- PIV analysis coincides with inclined cracks

Rough interface

3. How about a smooth interface?

- An example shear test -
- Heterogeneous deep-water Angolan silty clay
 - Pellets, agglomerates, diatoms, other detritus
- Monotonic shearing against a smooth interface for 22.8m
- Normal stress = 5kPa
- Shear rates = 0.5, 0.05, 0.005 and 0.0005mm/s

After shearing: evidence for re-structuring and realigning

Discussion of shearing behaviour

- Rough interface destroys natural structure
 - Crushing of 'fresh' pellets, generation of positive excess pore pressures (presented in Kuo&Bolton- this conference)
 - Formation of two families of cracks in soft clays (presented in Kuo- this conference)

- Smooth interface leaves natural structure intact?
 - At a 'macro-scale', largely yes?
 - At a 'micro-scale', perhaps no...
 - Evidence for re-ordering and re-structuring of clay fabric

Concluding comments

- Research observations
 - Seabed comprises biological structures including pellets and burrows
 - Choosing the correct scale (and tools) can sometimes be all it takes (Goldilocks)
 - Biological structures influence behaviour of pipelines
 - Particle crushing, crack formation, restructuring of original structure
 - Shearing with rough and smooth interfaces BOTH alter the soil structure: on the microscale
 - Rough interface \rightarrow turbulent, destructive shearing
 - Smooth interface \rightarrow sliding, realigning of structure
- A multi-disciplinary topic requiring more than just geology and engineering...
 - Biology, microbiology, zoology

"...observe the small facts upon which large inferences may depend..."

- Sherlock Holmes, The Science of Deduction, Sir Arthur Conan Doyle

