
To see and compute as never 
before in granular materials: 

the avatar concept
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The avatar concept

physical features
behavior
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Current workhorse: 
Photoelasticity

• Great in 2D

• Great insight into force-
chain evolution

• Cannot provide accurate 
quantitative values of 
contact force

• Cannot work in opaque 
materials (e.g., sand) Source- Jie Zhang/Duke University



Can contact forces be 
measured?

• 3DXRCT & 3DXRD: 
grain topology, 
kinematics & average 
grain strains

• Fundamental question: 
how to use information 
(constitutive modeling)?

• Missing link: grain 
contact forces Vs. stress
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experimentally capture inter-particle forces
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Frictionless “air hockey” table
(only forces are inter-particle)

Phantom v310 high-speed camera Rubber “grains” and rigid impactor

v0x=-1.14m/s
More unknowns than momentum equations

(1/500 real time)
v0y=-0.66m/s

Dynamic Validation of Method
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Clustering (using spheres) Polyhedra

Spheropolyhedra Potential Particles



Granular Element Method

• A new discrete element method that has the ability to 
represent complicated grain geometries

• Uses parametric curves and surfaces

• Brings free-form computer-aided graphics design 
technology to full force for the realistic simulation of 
granular materials 

(a) (b) (c)



Features of GEM

• Captures particle morphology: sphericity & roundness

• Can seamlessly go from binary images (XRCT) to model

• Can perform calculations with real shapes

• Accurately predicts macroscopic response 

• Retains the simplicity of conventional DEM

(a) (b) (c)
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Experimental data: stress-strain (macro) & grain 
kinematics (micro)



Simple shear numerical experiments



Computation of plastic 
parameters from DEM 

(micro) model



Hierarchical multiscale scheme
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Closure 1/3
• We can now measure 

& compute granular 
BEHAVIOR: 
kinematics+forces



Closure 2/3
• Coupling between imaging & computational 

power is making progress real 
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Closure 3/3
• First time EVER a 

multiscale model 
has captured 
accurately macro 
behavior of REAL 
granular materials!
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