
A PROSPECT FOR TURBULENCE IN GEOMECHANICS 

Pierre Rognon,  
Thomas Miller,  

Danielle Griffani, 
Bloen Metzger,   

Itai Einav 

Particles and Grains Laboratory 
School of Civil Engineering  

The University of Sydney 



MOTIVATION 
PARADOX OF SHEAR HEATING IN EARTHQUAKE PHYSICS 
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Ø  This project originates from an 
attempt to quantify shear heating 
in earthquake fault gouges.  

Ø  ‘Paradox’ = anomaly of measured 
real heat produced vs production 
expected by Coulomb friction. 

 

The San Andreás fault in California, USA 
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MOTIVATION 
TURBULENCE IN ‘QUASI-STATIC’ GRANULAR MEDIA (GRANULENCE)  
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DEM simulations: 
Radjai-Roux, PRL 2002  

(a)$ (b)$ (c)$

Experimental confirmation (with 1γ2ε):  
Richefeu-Combe-Viggiani, GLett 2012 



THERMAL DEM 
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THERMAL DEM 
FAULT GOUGE MODEL 
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that allow the transition from unstable to stable flow in crustal rocks. An alter-
native model to interpret the association of pseudotachylytes with mylonites is
downward propagation of seismic ruptures in the lower crust [20]. Here we develop
a micromechanical approach to construct a general phase diagram dependent on
the characteristic times for melting, thermal di↵usion, and loading rates, at this
stage without accounting for crystal-plastic deformations that possibly dominate
in deeper faults [21].
The development of melt associated with pseudotachylytes can be lead to critical

weakening factors. Such factors have been studied at the scale of laboratory tests.
Spray [22] showed in experiments performed on solid granite that grain comminu-
tion is precursor to friction melting. Through experiments with solidification of
melted asperity contacts prior to bulk melting, Tsutsumi and Shimamoto [23] pro-
posed that the initial peak in friction was due to welding of the asperities. Recently,
Di Toro et al. [8] carried out experiments on solid rocks to measure rock friction in
the presence of melts under seismic slip conditions. Using theoretical studies with
the consideration of the rate and state friction law, fault weakening was associated
with either flash heating involving localized asperity melts [5] and global melting
[24, 25]. Finally, numerical models using the discrete element method (DEM) have
been used to study fault localizations with a focus given to comminution [26, 27],
stick-slip driven by local force chain buckling between the grains [28], and the
thermal convection arising from the dispersed granular motions and temperatures
within the fault [29]. The method of Rognon and Einav [29] is specifically rele-
vant to the current paper, in that it accounts for heat transfer between grains.
However, this work did not consider aspects of heat generation and subsequent
melting processes, which are critical to pseudotachylyte rocks. Here this method
is extended with added details accounting for the melting of the grain surfaces,
melt viscosity, solidification of melts, and deboning of the solidified melts. In this
Meltable-DEM model, heat generation comes from intergranular viscous damping
and most importantly from intergranular friction.

2. Dimensionless numbers

We start by identifying the key parameters for idealized fault model accounting for
thermal di↵usion and mechanical stick-slip dynamics. The fault under consideration
is located at a depth H, with a fault core thickness h, as shown in Fig. 1(a).
The mechanical boundary to the fault layer is being imposed via a spring-dashpot

Figure 1. Model schematics: (a) rock mass with a fault located at depth H, with thickness h, and ambient
temperature ✓0; (b) boundary conditions for the Meltable-DEM with the spring-dashpot system represent-
ing the intact rock above the fault, d denoting the average grain diameter, �yy being the e↵ective vertical
stress, qb denoting the heat flux di↵used to the environment and KD, ⌘D and vD referring to the earth
crust parameters including the e↵ective shear sti↵ness, the damping dashpot constant and the dragging
velocity, respectively; (c) grains with molten layers.

σyy ≈ ρgZ	
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Rognon-Einav, PRL 2010  



TIMES & DIMENSIONLESS GROUPS 
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CONDUCTION VS. CONVECTION 
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Rognon-Einav, PRL 2010  



SIGNIFICANCE OF DRY GRANULAR CONVECTION 
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Nu = 10,000 

Earthquakes 10-3 0→10-1 1→105 
Landslides 10-6 0→10-2 10-1→104 
Present study 10-3 10-3→10-1 10-2→105 
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transient vortex 
convection spikes 

 

conduction 

SOURCE OF DRY GRANULAR CONVECTION 
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STADIUM SHEAR DEVICE 
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Miller-Rognon-Metzger-Einav, 
PRL 2013  
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11 

Γ = 0.08 s−1 Γ = 0.8 s−1
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Miller-Rognon-Metzger-Einav, PRL 2013  
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STADIUM SHEAR DEVICE 
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mean velocities and strain rates  

Miller-Rognon-Metzger-Einav, PRL 2013  
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STADIUM SHEAR DEVICE 
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circulation-based vortex detection 

Thomas Miller (PhD thesis, 2014) 

velocity field, v(x,y) fluctuation velocities, v’(x,y) time average 
velocity profile 

normalised circulation, C(x,y) local extremum of C = vortex 
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STADIUM SHEAR DEVICE 

turbulence in geomechanics 

circulation-based vortex detection 

Thomas Miller (PhD thesis, 2014) 

vortices (red=clockwise) 
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STADIUM SHEAR DEVICE 
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vortex lifetime  
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STADIUM SHEAR DEVICE 
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vortex size 

profile of max vortex size vortex size distribution 
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EDDY VISCOSITY 

turbulence in geomechanics 

Bagnold’s scaling at steady flow suggests: τ = ρd 2 f1(φ ) !γ
2

which does not hold here since equilibrium requires τ = constant. 
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Miller-Rognon-Metzger-Einav, PRL 2013  
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GRANULAR BOUNDARY LAYER 
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DEM SIMULATIONS 
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TRACER METHOD – MOLECULAR DIFFUSIVITY 
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TRACER METHOD – ‘FIXED VORTICES’ 
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Griffani-Rognon-Metzger-Einav, Phys Fluids 2013  



TRACER METHOD – ‘TRANSIENT VORTICES’ 
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Griffani-Rognon-Metzger-Einav, Phys Fluids 2013  



TRACER METHOD – EFFECTIVE DIFFUSIVITY 
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PROSPECT IN GEOPHYSICS è MAXIMUM TEMPERATURE  
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put Nu = 10,000… 

Chester, Fredrick M. et al 2004 
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PROSPECT IN EXPERIMENTAL GEOMECHANICS 
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3D Stadium Shear Device 



CONCLUSIONS 

1.  Turbulence in granular media opens new 
questions in geomechanics. 

2.  Granular heat convection can be 10,000 times 
that of heat conduction (even in quasi-static 
conditions!) 

3.  This has many implications, including in 
earthquakes, which may affect predictions and 
onset of activation processes 

4.  10,000 or 1,000 or not, this work calls for 
further experimental, computational and 
theoretical studies (in 3D!) 
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