X-ray tomography for granular materials current trends and perspectives

Cino Viggiani

Laboratoire 3SR (Sols, Solides, Structures, Risques)

University of Grenoble, France

Pierre Bésuelle

Jacques Desrues

Steve Hall

Eddy Andò

outline

- x-ray radiography, x-ray tomography
- x-ray tomography and image analysis
- trends, challenges, perspectives
 - individual grain kinematics
 - characterization of grain-to-grain contacts
 - production of fines by grain breakage
 - cemented granular materials (grain debonding)
 - partially saturated sand (menisci)
 - fine-grained geomaterials

Hand with Ring: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on 22 December 1895 and presented to Ludwig Zehnder of the University of Freiburg, on 1 January 1896

- discovery of x-rays by Wilhelm Röntgen
- first radiographies in 1895
- first ever Nobel prize in Physics in 1901

x-rays have been voted **the** discovery of the last 100 years

radiographs are maps in **2D** of the attenuation of the x-rays as they travel through the object being imaged

x-ray radiography and geomechanics

Roscoe and coworkers, Cambridge 1960s

when things must be seen in 3D, then radiography is not sufficient radiography (2D) \rightarrow computed tomography (3D)

in order to get a 3D image with x-rays we need:

many radiographs (acquired at different angular positions) some mathematics (Radon transform)

- tomography = "extension" of radiography
- original mathematical framework by Radon in 1917
- first x-ray CT scanner in 1972 by Hounsfield & Cormack
- Nobel prize in Medicine in 1979

x-ray tomography and geomechanics

Jacques Desrues: using a medical CT scanner to hunt for strain localization in 3D in sand

Desrues, J., Chambon, R., Mokni, M. & Mazerolle, F. (1996). Géotechnique 46, No. 3, 529-546

Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography

in a geomechanics lab in Grenoble...

IS-Cambridge 2014 1 - 3 September 2014. Cambridge, UK.

imaging the physics at the pertinent scale(s)

imaging lab-scale CPT

Priscilla Paniagua NTNU Trondheim

Paniagua, P. et al. (2013) Géotechnique Letters 3, 185–191, http://dx.doi.org/10.1680/geolett.13.00067

Soil deformation around a penetrating cone in silt

P. PANIAGUA*, E. ANDÒ†, M. SILVA†, A. EMDAL*, S. NORDAL* and G. VIGGIANI†

Matias Silva

Marios Gkiousas-Kapnisis

low tech "CPT" in flat "sand"

IS-Cambridge 2014 1 - 3 September 2014. Cambridge, UK.

bean seed growth in sand

Carlos Santamarina Georgia Tech

Daiki Takano PARI Yokosuka

Viggiani et al. (2014) - Laboratory x-ray tomography: a valuable experimental tool for revealing processes in soils

1 - 3 September 2014. Cambridge, UK.

bean seed growth in sand

Viggiani et al. (2014) - Laboratory x-ray tomography: a valuable experimental tool for revealing processes in soils

massive ice lensing in bentonite

radial growth of ice lenses in kaolinite

Viggiani et al. (2014) - Laboratory x-ray tomography: a valuable experimental tool for revealing processes in soils

IS-Cambridge 2014 1 - 3 September 2014. Cambridge, UK.

Caicos Ooid Calcite, D₅₀ = 350µm very rounded

Ottawa 50/70 Sand Quartz, $D_{50} = 250 \mu m$ rounded

Hostun HN31 Sand Quartz, D₅₀ = 338µm angular

individual grain kinematics

Hall et al., Géotechnique 2010 Andò PhD 2013 Andò et al. Acta Geotechnica 2012 Andò et al. Géotechnique Letters 2012 Andò et al. Géotechnique Letters 2013

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Intensity of Rotations

Introduction to this Phd Mechanical experiments with x-ray scanning Making grain-based measurements Results

Grain-based results Collaborations

Conclusions and perspectives

Grain-scale kinematics for test COEA01

Deviatoric Strain

Intensity of Rotations

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Intensity of Rotations

Edward Andò IS-Cambridge 2014 1 - 3 September 2014. Cambridge, UK.

9QC

Đ.

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Phd Defense

Edward Andò

Intensity of Rotations

46 / 59

IS-Cambridge 2014 1 - 3 September 2014. Cambridge, UK.

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Phd Defense

Edward Andò

Intensity of Rotations

9QC

æ,

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Phd Defense

Edward Andò

Intensity of Rotations

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Phd Defense

Edward Andò

Intensity of Rotations

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Edward Andò

Deviatoric Strain

Phd Defense

Intensity of Rotations

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Intensity of Rotations

æ,

5900

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Phd Defense

Edward Andò

Intensity of Rotations

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Intensity of Rotations

9QC

æ,

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Phd Defense

Edward Andò

Intensity of Rotations

æ,

9QC

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Phd Defense

Intensity of Rotations

Grain-based results Collaborations

Grain-scale kinematics for test COEA01

Deviatoric Strain

Phd Defense

Edward Andò

Intensity of Rotations

don't forget these are 3D data

3S

are we happy with what we can measure? Beyond grain kinematics

in-situ x-ray tomography combined with advanced image processing now allows **experimental micro-(geo)mechanics**

e.g., high-quality kinematical measurements are possible on all (say 50000) grains in a sand specimen deforming under load

but, different scales of interest exist

challenges arise when smaller-than-grain-scale measurements are required

- characterization of grain-to-grain contacts (orientations and evolution)
- production of fines by grain breakage
- cemented granular materials (grain debonding)
- partially saturated sand (menisci)
- ...

0

Coordination Number

A digital grain

Vlahinić et al., 2014, Granular Matter

a "grain" is in fact an assembly of voxels

Andò et al., 2013, Géotechnique Letters

how well resolved is a contact between such voxelated objects?

Pair of Mathematicians

Hugues Talbot

Clara Jaquet

\Rightarrow Contact orientation algorithm

Jacquet et al., 2013, Proceedings ISMM

Viggiani et al., Powders and Grains 2013

IS-Cambridge 2014 1 - 3 September 2014. Cambridge, UK.

evolution of contact network – why do we care?

\rightarrow measuring fabric and fabric evolution – talk to Yannis D.

Xia Li · Hai-Sui Yu

Fabric, force and strength anisotropies in granular materials: a micromechanical insight

Acta Mech 225, 2345-2362 (2014) DOI 10.1007/s00707-014-1120-6

Laboratoire 3SR Grenoble

Marios Gkiousas Kapnisis

Gaël Combe

City University of Hong Kong

Budi Zhao

Matthew Coop

Jeff Wang

Cino Viggiani

grain breakage – production of fines

University of Sydney

Alessandro Tengattini

Eddy Andò

Itai Einav

Uni CIPR Bergen

Reza Alikarami Anita Torabi

Zeynep Karatza

Stefanos Aldo Papanicolopulos

University of Edinburgh

Alikarami et al., Acta Geotechnica 2014 (submitted)

3S R

Colliat-Dangus et al., 1988, ASTM

$$\sigma_3 = 100 \text{ kPa}$$

$\sigma_3=100 \text{ kPa}$

$\sigma_3=100~\text{kPa}$

$\sigma_3=100~\text{kPa}$

$$\sigma_3 = 100 \text{ kPa}$$

$\sigma_3=100 \text{ kPa}$

$\sigma_3=100~\text{kPa}$

$\sigma_3=100 \text{ kPa}$

$\sigma_3=100~\text{kPa}$

$\sigma_3=100~\text{kPa}$

So... what's happening?

Recent single-grain (d=3mm) uniaxial compression x-ray work from Hong Kong

B. Zhao, J. Wang, M. Coop

...at our scale ...

Recent single-grain (d=3mm) uniaxial compression x-ray work from Hong Kong

B. Zhao, J. Wang, M. Coop

 $\Delta z = 227.7 \,\mu m$ Load = 30 N

Rock on Top of Another Rock by Fischli/Weiss (Serpentine Gallery, London – March 2013)

M. B. CIL* and K. A. ALSHIBLI*

triaxial compression tests at high pressure ($s_3 = 7 Mpa$)

recent results from 1D compression of zeolite ($D_{50} = 1.2 \text{ mm}$)

3S R

- grains do break
- fine material fills up the pore space
- coarser grains are visible but surrounded by finer material
- as it is, the final state image cannot be segmented

a challenge for image analysis – why do we care?

\rightarrow measuring evolution of breakage B – talk to Itai E.

Breakage Mechanics model by Einav (JMPS 2007a, 2007b)

cemented granular materials – both grains and bonds can break

grain cementation by quartz overgrowths

J. Fonseca, P. Bésuelle and G. Viggiani, Géotechnique Letters 2013

the quantitative grain-scale study of bonded granular materials is very challenging grain-scale processes involve grain rearrangement + debonding + grain breakage

 \rightarrow from natural materials to model materials

x-ray scan of calcite-cemented Glass Ballotini

(PhD Alessandro Tengattini)

A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I–Theory

Alessandro Tengattini^{a,b}, Arghya Das^a, Giang D. Nguyen^c, Gioacchino Viggiani^b, Stephen A. Hall^d, Itai Einav^{a,*}

A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part II – Validation and localization analysis

Arghya Das^a, Alessandro Tengattini^{a,b}, Giang D. Nguyen^c, Gioacchino Viggiani^b, Stephen A. Hall^d, Itai Einav^{a,*}

Journal of the Mechanics and Physics of Solids

granular materials – more than two phases

partially saturated sand

what about fine-grained geomaterials?

how small is "small" for a clay?

BIB image of Boom Clay -- courtesy of J.L. Urai, Aachen University

Shear strain (%)

0

10

Shear strain (%)

 $\mathbf{3}$

IS-Cambridge 2014

1 - 3 September 2014. Cambridge, UK.

micro AND macro \rightarrow multi scale

- observing, measuring (w/statistics), understanding 1. the relevant physics at some appropriately small scale
- injecting this physics into double-scale models or 2. micro-inspired models (micro \rightarrow macro)

the success of multi-scale approaches crucially depends on the quality of the physics one injects: ideally, this comes directly from experiments

there is still plenty of work (and fun) ahead of us!

